Measurement of the Baryon Acoustic Oscillation scale at z = 1 with Dark Energy Survey year 1 data

Hugo Camacho in collaboration with DES-Brazil-LSS WG and DES-LSS WG

Universidade de São Paulo and LIneA

LINEA webinar. March 8th, 2018

Outline

Introduction and motivation

BAO feature in DES-Y1 data

Conclusions

The cosmological standard model

- Space-time geometry.
 - Fundamental (isotropic) observers, u^a .
 - Constant time (homogeneous) hyper-surfaces, Σ_t .

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + a^2(t) d\ell^2$$

- Matter/energy content.
- ► Law of gravitation.

$$G_{ab} := R_{ab} - \frac{1}{2}Rg_{ab} = \kappa T_{ab} - \Lambda g_{ab}$$

An actual concordance model

 $\Omega_c h^2$

... So the universe is accelerating

▶ Shortfall on its contents

$$\Omega_{\rm DE}:\Omega_{\rm m}:\Omega_{\rm b}\approx70:26:4$$

- ► Independent observational evidence
 - Supernovae are further away than expected
 - Growth of structure has been slowed
- Tremendous implications for physics/astronomy
 - Current understanding of gravity is incomplete
 - Current understanding of universe constituents is incomplete

How to gain information about DE's nature?

Implications on the recent (observable) universe volume.

- \triangleright Expansion rate, H(z)
- ► Growth of structure
- Abundance of collapsed/virialized objects
- ► Light rays deflection by structures

All related directly or indirectly with distance estimation calibration, $d_{\rm L}, d_{\rm A}(z)$

The Dark Energy Survey (DES)

- ► International collaboration: USA, OK, Spain, Germany, Chile, Switzerland and Brazil
- ► Wide field photometric "legacy survey" griz (SDSS) bands → largest volume to date: tens of Gpc³
- ► Four main cosmological observables:
 - ► Galaxy cluster counts, ≈ 100000 , 0.3 < z < 1.3
 - ► Clustering of galaxies, 200 million, same z
 - Weak lensing tomography, up to $z \sim 1$
 - ▶ Distance/luminosities of SNIa 0.3 < z < 0.8

BAO as standard ruler

two-point statistics

$$\langle dN_{\text{pairs}}(r, \hat{\mathbf{n}}) \rangle = \bar{n}_{\text{g}}^2 \left[1 + \langle \delta_{\text{g}}(\mathbf{x}) \delta_{\text{g}}(\mathbf{x} + r\hat{\mathbf{n}}) \rangle \right] dV_1 dV_2$$

Two point correlation function:

$$\xi_{\rm g}(r, \hat{\mathbf{n}}) = \langle \delta_{\rm g}(\mathbf{x}) \delta_{\rm g}(\mathbf{x} + r \hat{\mathbf{n}}) \rangle$$

▶ Contain information about the scale of BAO!

two-point statistics

How to deal with photometric redshifts?

Proper projection of the 3D fluctuation field

$$\left| \delta_{\mathbf{g}}^{2\mathbf{D}}(\theta, \varphi) := \int_{0}^{\infty} \mathrm{d}z \, W^{\mathbf{g}}(z) \widehat{R}_{\mathbf{g}} \delta_{0}(\chi, \theta, \varphi) \right|$$

▶ Projection kernel ↔ galaxy window function

$$W^{\mathrm{g}}(z) := \phi^{\mathrm{g}}(z)b_{\mathrm{g}}(z)G(z)$$

 $\phi^{\rm g} \equiv {\it radial \ selection \ of \ galaxies}$

Measuring the BAO scale

An appropriate template for 2pt statistics.

$$\begin{split} P(k,\mu) &= (1 + \mu^2 \beta)^2 \left((P_{\rm lin} - P_{\rm nw}) e^{-k^2 \Sigma_{\rm nl}^2} + P_{\rm nw} \right) \\ &\Sigma_{\rm nl}^2 = (1 - \mu^2) \Sigma_\perp^2 / 2 + \mu^2 \Sigma_{||}^2 / 2. \end{split}$$

Configuration space

$$w_{\text{BAO}}(\theta) = \int dz_1 \int dz_2 \phi(z_1) \phi(z_2) \xi_s(s[z_1, z_2, \theta], \mu[z_1, z_2, \theta]).$$

$$\xi(s_{\perp}, \mu) = \int dz G(z) \xi(s_{\text{true}}[s_{\perp}, \mu, z], \mu_{\text{true}}[s_{\perp}, \mu, z]),$$

► Harmonic space

$$C_{\ell ext{BAO}} = rac{2}{\pi} \int dk \ k^2 P_{ ext{gal}}(k) \{ \Psi_{\ell} \}^2$$

$$\Psi_{\ell} = \int dz \ G(z) \phi(z) j_{\ell}[k \chi(z)] + \Psi_{ ext{RSD}}$$

Measuring the BAO scale

Each method allow us to infer a $\mathcal{L}(\alpha)$

$$\alpha = \frac{D_A(z_{\rm eff})r_{\rm d}^{\rm fid}}{D_A^{\rm fid}(z_{\rm eff})r_{\rm d}}, \quad \frac{D_A(z_{\rm eff})}{r_{\rm d}} = \alpha \frac{D_A^{\rm fid}(z_{\rm eff})}{r_{\rm d}^{\rm fid}}.$$
$$D_A(z) = \frac{c}{H_0(1+z)} \int_0^z dz' \frac{H_0}{H(z')}, \quad \Delta\theta \propto \frac{r_{\rm d}}{D_A(z)}$$

Configuration space

$$M(x) = BT_{\text{BAO}}(x\alpha) + A(x)$$

Harmonic space

$$C(\ell) = BT_{\text{BAO}}(\ell/\alpha) + A(\ell)$$

DES Y1 BAO galaxy sample

$z_{ m photo}$	$N_{ m gal}$	$\sigma_{68}/(1+z)$	$f_{ m star}$
0.6 < z < 0.7	386057 (332242)	0.023 (0.027)	0.004 (0.018)
0.7 < z < 0.8	353789 (429366)	0.028 (0.031)	0.037 (0.042)
0.8 < z < 0.9	330959 (380059)	0.029 (0.034)	0.012 (0.015)
0.9 < z < 1.0	229395 (180560)	0.036 (0.039)	0.015 (0.006)

- Extend the selection of LRGs from SDSS to cover the higher redshift and deeper data (DES)
- ► 1.3 million red galaxies across 1318 deg² of area, largely contained in one compact region (SPT)

Covariances, 1800 Halogen mocks

case	$\langle \alpha \rangle$	$\langle \sigma \rangle$	S_{α}	$f(N_{ m det})$
0.6 < z < 1.0:				
$\xi + w$	1.004	0.050	0.050	0.917
w(heta)	1.001	0.051	0.054	0.898
$w(\theta), \Delta\theta = 0.15 \deg$	1.001	0.054	0.055	0.907
$w(\theta), \theta_{\min} = 1 \deg$	1.002	0.051	0.053	0.898
C_ℓ	1.007	0.058	0.053	0.864
ξ (bins combined)	1.004	0.048	0.050	0.916
ξ , $+0h^{-1}$ Mpc	1.004	0.048	0.050	0.916
ξ , $+3h^{-1}$ Mpc	1.004	0.048	0.051	0.916
$\xi, +6h^{-1} \mathrm{Mpc}$	1.005	0.048	0.050	0.916
ξ , $+9h^{-1}$ Mpc	1.005	0.048	0.050	0.921
ξ , $s_{\perp \min} = 50h^{-1}$ Mpc	1.005	0.049	0.050	0.913
$\xi, \Delta s_{\perp} = 5h^{-1} \mathrm{Mpc}$	1.005	0.050	0.051	0.918
$\xi, \Delta s_{\perp} = 10h^{-1} \mathrm{Mpc}$	1.005	0.049	0.050	0.916
ξ , $\Delta s_{\perp} = 15h^{-1} \mathrm{Mpc}$	1.004	0.048	0.051	0.911

Angular power spectrum measurements. MASTER or PCL approach

$$\begin{split} \tilde{a}_{\ell m} &= \int d\mathbf{n} \Delta T(\mathbf{n}) W(\mathbf{n}) Y_{\ell m}^*(\mathbf{n}) \\ &\approx \Omega_p \sum_p \Delta T(p) W(p) Y_{\ell m}^*(p) \\ &\widetilde{C}_{\ell} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |\tilde{a}_{\ell m}|^2 \\ &\langle \widetilde{C}_{\ell} \rangle = \sum_{\ell'} M_{\ell \ell'} \langle C_{\ell'} \rangle \end{split}$$

[Hivon et. al.(2001) arXiv:astro-ph/0105302] [Elsner, Leistedt and Peiris (2016) https://arxiv.org/abs/1609.03577]

Angular power spectrum measurements

Angular power spectrum covariance

Estimation methods

$\Sigma_{\rm nl} = 5.2 \; { m Mpc} h^{-1}$

N(z)

Cross-correlations

Bandpowers

P(k) model

Broadband terms

	/ \	/ \	σ.	C(NT)	C 1
case	$\langle \alpha \rangle$	$\langle \sigma \rangle$	S_{α}	$f(N_{\text{det}})$	mean of mocks
$\Delta \ell = 15, 30 < \ell < 330$:					
$A_0 + A_1 \ell + A_2 \ell^{-1}$	1.003	0.051	0.058	0.752	1.008 ± 0.056
$A_0 + A_1 \ell + A_2 \ell^{-2}$	1.007	0.058	0.053	0.864	1.009 ± 0.056
$A_0 + A_1\ell + A_2\ell^2$	1.011	0.056	0.055	0.851	1.013 ± 0.056
$\Delta \ell = 20, 40 < \ell < 300$:					
$A_0 + A_1\ell + A_2\ell^{-1}$	1.003	0.051	0.060	0.734	1.006 ± 0.058
$A_0 + A_1 \ell + A_2 \ell^{-2}$	1.006	0.059	0.056	0.812	1.006 ± 0.058
$A_0 + A_1\ell + A_2\ell^2$	1.009	0.057	0.057	0.790	1.012 ± 0.057
$\Delta \ell = 15, 45 < \ell < 330$:					
$A_0 + A_1 \ell + A_2 \ell^{-1}$	1.004	0.050	0.059	0.736	1.009 ± 0.056
$A_0 + A_1 \ell + A_2 \ell^{-2}$	1.007	0.057	0.054	0.841	1.009 ± 0.056
$A_0 + A_1 \ell + A_2 \ell^2$	1.011	0.056	0.055	0.839	1.013 ± 0.056
$\Delta \ell = 20, 40 < \ell < 320$:					
$A_0 + A_1\ell + A_2\ell^{-1}$	1.004	0.050	0.060	0.731	1.008 ± 0.056
$A_0 + A_1 \ell + A_2 \ell^{-2}$	1.007	0.058	0.055	0.833	1.008 ± 0.057
$A_0 + A_1 \ell + A_2 \ell^2$	1.011	0.056	0.057	0.831	1.014 ± 0.057

Summary of stress tests

Y1 Measurement $z_{\rm eff} = 0.81$	$D_A/r_{\rm d}$ 10.75 ± 0.43	
case	α	$\chi^2/{ m dof}$
$w(\theta)$ [consensus]	1.033 ± 0.041	53/43
ξ (bins combined)	1.026 ± 0.044	9/9
Robustness tests:		
C_{ℓ}	1.023 ± 0.047	94/63
$w(\theta)$ fiducial	1.033 ± 0.041	53/43
$w(\theta) \Delta \theta = 0.15$	1.033 ± 0.045	159/103
$w(\theta) \theta_{\min} = 1$	1.038 ± 0.038	50/39
$w(\theta)$ Planck×1.042	1.034 ± 0.041	52/43
$w(\theta)$ BPZ	1.018 ± 0.043	56/43
$w(\theta)$ z uncal	1.023 ± 0.040	52/43
$w(\theta)$ no $w_{\rm sys}$	1.028 ± 0.039	51/43
$w(\theta) \Sigma_{nl} = 2.6$	1.028 ± 0.035	51/43
$w(\theta) \Sigma_{nl} = 7.8$	1.033 ± 0.056	55/43
$w(\theta)$ free $\Sigma_{\rm nl}$	1.028 ± 0.033	51/42
$w(\theta) \ 0.7 < z < 1.0$	1.053 ± 0.040	37/32
ξ fiducial binning	1.031 ± 0.040	9/9
$\xi -3$	1.031 ± 0.045	12/9
$\xi +3$	1.017 ± 0.041	8/9
ξ +6	1.025 ± 0.050	7/8
$\xi \Delta s_{\perp} = 5$	1.021 ± 0.041	45/29
$\xi \Delta s_{\perp} = 8$	1.029 ± 0.046	31/16
$\xi \Delta s_{\perp} = 10$	1.022 ± 0.037	16/12
$\xi \Delta s_{\perp} = 15$	1.012 ± 0.039	7.5/6
$\xi s_{\perp, \min} = 50$	1.032 ± 0.046	8/7
ξ Planck×1.042	1.018 ± 0.041	7/9
ξ BPZ	1.012 ± 0.040	12/9
ξ no $w_{\rm sys}$	1.029 ± 0.040	10/9
$\xi \Sigma_{\rm nl} = 4$	1.023 ± 0.038	9/9
$\xi \Sigma_{nl} = 12$	1.043 ± 0.052	11/9
$\xi \Sigma_{\rm nl}$ free	1.024 ± 0.039	9/9
$\xi 0.7 < z < 1.0$	1.052 ± 0.031	17/9

BAO measurements

BAO measurements

BAO detection

Conclusions

- ▶ Dark energy remains as one of the biggest puzzles and data can give light to solve it.
- ▶ BAO detection is robust for wide photo-*z* surveys like DES.
- BAO measurements had previously been proven to be a robust and precise method for measuring cosmological distances when using spectroscopic redshifts
- Looking forward for Y3